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a b s t r a c t

The design of lattice structures with exceptional mechanical performance has been accentuated
by recent advances in both additive manufacturing and mechanical modeling. Although there is a
plethora of different lattice structures with intriguing properties, such as auxeticity and reciprocity, an
exceptional class of lattice geometries is that of intertwined lattices, designed by the tactical coalition
of polyhedral structures. Although the superior mechanical performance of the latter structures has
been demonstrated at the microscale, their mechanical analysis is still incipient. In this study, the
design principles and mechanical performance of such three-dimensional structures were examined
at the macroscale and juxtaposed with their microscale counterparts. As a proof of concept, the first
stellation of the rhombic dodecahedron, an ultralight/ultrastiff architected structure with superior
stiffness and strain hardening characteristics, was examined both numerically and experimentally.
Finite element analysis showed that intertwining greatly enhances both the stiffness and isotropic
behavior of the structure. In addition, mechanical testing of both microscale and macroscale structures
revealed that lattice intertwining leads to commensurate stiffness and strain energy density compared
to that of the bulk material, even for 20% relative density. The findings of this study pave the way for
a systematic and rigorous approach to design and modeling of macroscopic intertwined geometries,
for comparing them with their microscopic equivalents, and for providing insight into scale effects on
the mechanical performance of architected materials with intertwined lattices.

© 2020 Elsevier Ltd. All rights reserved.
1. Introduction

The numerous intriguing properties of architected materials
ave motivated many studies in additive manufacturing and fun-
amental mechanics [1]. There are various categories of archi-
ected geometries, such as plate structures [2] and origami in-
pired designs [3,4], that have been thoroughly investigated. Plate
tructures have been found to exhibit isotropic behavior and
tiffness approaching the theoretical Hashin–Shtrikman upper
ound [2]. Although origami structures also consist of plate el-
ments, their geometry and mechanical properties are reconfig-
rable since they are simply supported at their edges. Moreover,
ecent advances in structural design have inspired the use of
rigami structures to control wave propagation [5].
Another important category of tailored geometries is that of

attice structures. Because these structures comprise beam mem-
ers that can be easily fabricated at various length scales and
heir mechanical behavior has been systematically studied [1,6],
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they have been used in several engineering disciplines. A char-
acteristic example is energy absorbing materials [7,8] that can
sustain large recoverable deformation under both static [9] and
dynamic loads [10]. In addition, several designs encompassing
auxeticity [11–15], large energy absorption [16], and sensing
capabilities [17] have been proposed. Designs including quasi-
random porous materials [11], star-shaped formations [14], and
hierarchical materials [13] have been employed to design bioma-
terials, such as artificial bone [6]. Additionally, biomimetic foam
structures have been used in regenerative tissue engineering to
construct implants with desirable mechanical properties [18].

Imitating polycrystalline designs at the macroscale has been
accomplished by exploiting the same hardening and strengthen-
ing mechanisms observed at the microscale, leading to the design
of non-monolithic lattice structures [19]. The concept of recon-
figuration from the perspective of mechanical performance has
also been explored for lattice structures [4]. Most notably, pro-
grammable active lattices that alter their behavior from stretch-
ing to bending dominated and vice versa have enabled the fabri-
cation of ultrastiff, high-energy absorption materials [20]. Struc-
ture reconfiguration may also be instigated by the deformation
of the structure. These design concepts combined with recent
advances in three-dimensional (3D) printing of highly stretchable
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materials [21] can forge programmable malleability depending
on the loading conditions [22]. Major progress regarding the en-
hancement of the isotropic behavior of lattice structures has also
been reported in recent studies [23,24]. Isotropy is imperative to
the design of conventional engineering structures with properties
independent of the loading direction. While tacit instantiations
and improvements have been encountered, future progress can
make lattice structures comparable to isotropic plate structures
through the development of more rigorous mechanical design
methodologies [2]. Although controlling scale effects in macro-
scopic bodies consisting of microscopic unit cells is possible, this
is a major design challenge because it requires microscale print-
ing techniques that can print on large surface areas. These types
of effects have been studied with pentamode metamaterials ex-
hibiting nonuniform material distribution of their beam members
that can be easily fabricated even with conventional 3D printing
techniques [25–27]. Nevertheless, they have not been investi-
gated in more complex lattice structures consisting of uniform
unit cells that are also fabricated by such printing techniques.

All of these remarkable properties are a consequence of tai-
loring the buckling response of the lattice structure [28]. Because
buckling is a mechanism of structural instability, it is neces-
sary to consider both the geometry of the structure and the
applied load [29]. Tailored buckling can affect lattice densifi-
cation, consequently increasing the stiffness and resilience to
large deformations of the structure [30,31]. In addition, controlled
buckling can be used as a bistability mechanism to tune the
equilibrium positions and enhance the energy absorption capac-
ity of the structure [32]. While buckling mechanisms manifest
themselves differently at the length scale of a unit cell and that
of an array, e.g., short- versus long-wavelength buckling [33], it is
necessary to investigate whether these effects commence before
fracture causes catastrophic collapse of the structure.

In previous investigations, buckling was controlled by the
orderly post-contact behavior of lattice members and the assem-
bly of the lattice unit cells. This approach led to the design of
intertwined structures demonstrating high densification of their
hyper unit cells, propelled by the interpenetration of neighboring
polyhedral structures [34,35]. Specifically, it was proven that the
intersection of proximal lattice members densifies the unit cell,
enhances the stiffness of even bending dominated structures,
and yields unprecedented strain hardening behavior under cyclic
loading. However, all of these attributes are greatly affected by
the material performance under loading conditions conducive to
excessive deformation, where buckling contributes to plastic de-
formation and post contact of the lattice members [36]. While the
materials used at the microscale embosom this intrinsic mechan-
ical performance, the polymeric materials used in conventional
large-scale 3D printing are fairly brittle, exhibiting limited or no
plastic behavior [37,38]. Therefore, it is questionable whether
these structures can also be effectively used at the macroscale for
structural engineering applications.

The objective of this study was to investigate and compare
the mechanical performance of macroscopic and microscopic in-
tertwined lattice structures. In particular, a main goal was to
examine the scalability of unit cells from the perspectives of 3D
printing and mechanical behavior. Using the first stellation (FS)
of the rhombic dodecahedron [34] as the baseline unit cell, it was
investigated whether controlled interpenetration of neighboring
unit cells can also enhance the mechanical performance at the
macroscale. For a valid evaluation, the FS structure was compared
to one of the most thoroughly investigated lattice structures, that
is, the octet truss (OT), and its respective bulk material. Finite
element analysis (FEA) provided insight into the effects of unit
cell interpenetration, resulting in densification and affecting the

directional stiffness and material isotropy. Mechanical testing of i
structures fabricated by 3D printing and multiphoton lithogra-
phy (MPL) at the macroscale and microscale, respectively, and
FEA simulations were used to evaluate the mechanical prop-
erties of aforementioned 3D lattice structures relative to those
of their bulk material. To provide insight into scale effects on
the mechanical performance of architected structures with inter-
twined lattices, the mechanical performance of the 3D printed
macrostructures are compared with that of the MPL fabricated
microstructures.

2. Mechanical characterization

Fig. 1 shows the design and relative density of the FS and
OT macrostructures examined in this study. The OT architected
geometry [1,7,21] is shown in Fig. 1A. The intertwined geom-
etry used in this study was inspired by the FS of the rhombic
dodecahedron. The FS unit cell of the structure consists of three
octahedra — two octahedra are rotated by 90◦ in the clockwise
and counterclockwise directions with respect to the central axis
of the stationary third octahedron (Fig. 1B). To augment lattice
intertwining, each of the stellated geometries was connected
edge-to-edge with neighboring unit cells, resulting in the forma-
tion of a structure with interpenetrating proximal unit cells. A
thorough analysis of the conceptual process used to design such
geometries has been reported elsewhere [34]. Because lattice
intertwining utilizes the internal vacant space of the unit cells,
it can enhance densification significantly. In contrast to the OT
unit cell, which does not have any fastigiated beam members on
its faces, such as the beam members extending outwardly from
the faces of the FS unit cell as pyramidal protrusions (Fig. 1B),
the beams of the hyper unit cell formed by the assembly of 9
(i.e., 3 × 3 array) FS unit cells produce a conglomeration of beams
in the interior of the lattice structure (Fig. 1C). Hereafter, this
structure will be referred to as the FS hyper unit cell. The relative
densities of both structures are compared in Fig. 1D. By measuring
the volume of each structure from the CAD files using the ANSYS
18.0 Design Modeler and then curve fitting the obtained data, the
following equations of the relative density ρ̄ of the FS and OT
macroscopic structures were obtained

ρ̄FS = 139.4
( r
L

)2
− 7.678

( r
L

)3
(1)

and

ρ̄OT = 71.38
( r
L

)2
− 4.099

( r
L

)3
, (2)

where r and L are the radius and the length of the lattice beam
members, respectively. Eqs. (1) and (2) indicate that the relative
density is a cubic polynomial of r/L, which includes the effect of
he volume of the joints of the structure on the relative density
hat becomes significant for ρ̄ > 0.05. The good fit of Eqs.
1) and (2) to corresponding CAD data, evidenced from Fig. 1D,
ndicates that the two-term polynomial functions can accurately
escribe the variation of the relative density in the r/L range
f this study. Although there are other intertwined geometries
hat demonstrate significantly higher densification, such as the
hree-compound octahedron [35], the spatial orientation of the
egular polyhedra of such structures reduces the gaps at their
aces, making the removal of supporting material in macroscale
D printing considerably more challenging. The same challenge
an be encountered with microstructures fabricated with the MPL
rocess because overlapping of sections of the structure may
ontain unpolymerized material that cannot be dissolved during
abrication [34]. However, the orientation of the three octahedra
n the FS unit cell offsets this design constraint, as seen in Fig. 1C.
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Fig. 1. Design and relative density of the octet truss (OT) and first stellation (FS) macrostructures. Side views of the (A) OT unit cell, (B) FS unit cell consisting of
hree octahedra that were offset by 90◦ from each other, and (C) FS hyper unit cell constructed by merging three FS unit cells distinguished by different colors.
D) Relative density versus lattice radius/length ratio. (E) Normalized joint surface area versus lattice radius/length ratio. The intertwined lattice members of the FS
acrostructure enhance more the relative density and the joint surface area compared to the OT macrostructure.. (For interpretation of the references to color in

his figure legend, the reader is referred to the web version of this article.)
A comparison of the connectivity and length distribution of the
eam members in the two designs was made by considering the
umber of beams connected at the joints of each structure. The
ength of all the OT beam members is equal to L/

√
2, whereas the

length of half of the FS beam members is equal to
√
3L/2 and that

of the other half is equal to L/2. It will be shown later that this
ength distribution in the network of each structure affects the
patial stress distribution significantly. From the total number of
eam joints in the OT structure, 57% are 3-beam joints, while the
est are 8-beam joints. The beam joints in the FS structure com-
rise 44.4% 4-beam joints, 44.4% 6-beam joints, and 11.2% 8-beam
oints. Therefore, the joint contribution to the structure rigidity
iffers significantly in the two designs. The difference in joint
igidity can be further quantified by comparing the joint surface
rea Aj to the total surface area of the structure As (determined

from the CAD files) as a function of r/L. This was accomplished
y computing the difference between As and the surface area
f all the beam members Ab (not including Aj) and defining the
ormalized joint surface area by A = Aj/As, where Aj = Ab − As.

Fig. 1E shows CAD data of A for different r/L values and best-fit
urves for the FS and OT structures, with equations given by

AFS = 7.854
( r
L

)
(3)

and

AOT = 3.972
( r
L

)
(4)

Eqs. (3) and (4) indicate that the joint surface area in the FS
structure is larger than that in the OT structure by a factor of
∼2. The significant difference in joint surface area of the two
structures has a significant effect on the overall enhancement of
the structural stiffness.

The average coordination number was used to determine
whether the mechanical response of the structures was bending
or stretching dominated. The calculated coordination number of
the FS hyper unit cell was found to be equal to 8, classifying it as a
bending dominated structure [39]. This implies that the stiffness
of the FS structure should be significantly lower than that of
the stretching dominated OT structure. However, FEA simulations
of the directional stiffness of each structure revealed that the
densification caused by the lattice intertwining compensated for
this effect. Because the OT structure exhibits cubic symmetry,
its elastic behavior can be fully characterized by three elastic
constants (C11, C12, and C44), whereas the elastic behavior of the
FS structure that demonstrates tetragonal symmetry is governed
by six elastic constants (C11, C12, C13, C44, and C66). (The indices of
the elastic constants are based on the Voigt notation of the stiff-
ness tensor.) To calculate the elastic constants, FEA simulations
were performed with the ANSYS Workbench 18.0 code, using a
numerical technique that provides close matching between the-
oretical and experimental results of anisotropic structures [23].
Both structures were meshed with 10-node tetrahedral elements.
The OT unit cell consisted of 21974 elements and 9963 nodes,
whereas the FS hyper unit cell consisted of 76513 elements and
35902 nodes. To ensure elastic deformation, both structures were
subjected to very small strains (<10−5). As discussed in the next
section, the experimentally determined elastic modulus of the
bulk material used in 3D printing is equal to 160 MPa. Since this
material exhibits behavior close to incompressible, its Poison’s
ratio was set equal to 0.499. Because the desired direction of
stiffness enhancement is perpendicular to the top face of the OT
unit cell and the FS hyper unit cell (Figs. 1A and 1C), this study
was focussed on augmenting the mechanical performance of the
structure in the [001] direction. The stiffness of the OT unit cell
and the FS hyper unit cell in this direction was calculated from
the following equations (Voigt notation):

E[001]OT =
C11 (C11 + C12) − 2C2

12

C11 + C12
(5)

and

E[001]FS =
C33 (C11 + C12) − 2C2

13 . (6)

C11 + C12
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Fig. 2. Numerical results of the normalized stiffness E/Eb of the first stellation (FS) and the octet truss (OT) macrostructures. Despite the fact that the FS is a bending
dominated structure, its normalized stiffness is significantly higher than that of the OT because of the significant number of beam members connected at the joints
of the FS structure. In addition, although the shape of the 3D stiffness map of the OT macrostructure does not vary with the relative density [36], the intertwined
beam members in the FS macrostructure change both the shape of its stiffness map and its anisotropic behavior.
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Calculating the elastic constants for different relative densities
yielded an Ashby chart of normalized stiffness E = E/Eb, where
Eb is the stiffness of the bulk material, of the FS hyper unit cell
(Fig. 1D) and the OT unit cell (Fig. 1A), which is shown in Fig. 2.
On the basis of this Ashby chart, it may be interpreted that the FS
stiffness in the [001] direction is significantly higher than that of
the OT, despite the fact that FS is a bending dominated structure.
A best fit of the OT stiffness versus relative density data obtained
from the FEA analysis yielded an equation similar to that reported
elsewhere [39]. The normalized stiffness of the FS hyper unit cell,
obtained by curve fitting the FEA data points shown in Fig. 2, is
given by

E[001]FS = 14.485ρ̄1.31. (7)

Furthermore, because of the significant effect of lattice intertwin-
ing on the anisotropy of the FS hyper unit cell at different relative
densities, it is necessary to consider the directional stiffness at an
arbitrary direction n, given by

E (n) =
1

(n ⊗ n) : C−1 (n ⊗ n)
, (8)

where C−1 is the compliance tensor of the lattice structure. For
structures lacking intertwined lattices, such as the OT, the size
of the stiffness map increases with the relative density without
changing its shape [37]. The stiffness map of the OT unit cell is
the same with that obtained from analytical expressions reported
elsewhere [40], providing validation to the FEA of this study. Al-
ternatively, the shape of the FS stiffness map shows a dependence
on relative density. Particularly, for ρ̄FS = 0.02, the stiffness
map demonstrates a star-like shape, whereas for ρ̄FS = 0.2 the
stiffness map is more uniform. The variation of the anisotropy of
the FS hyper unit cell and the invariance of the anisotropy of the
OT unit cell can be quantified in terms of the anisotropy Zenner
ratio A [23], which for cubic symmetry is defined by

AOT =
2C44

. (9)

C11 − C12
hen A = 1, the structure is said to exhibit isotropic behavior.
owever, Eq. (9) is only valid for structures demonstrating cubic
ymmetry. The variation of the stiffness map of the FS hyper unit
ell indicates a changing anisotropy. The degree of anisotropy for
ifferent structural symmetries can be quantified by the magni-
ude of the universal elastic anisotropy index [41]. Because the FS
yper unit cell demonstrates tetragonal symmetry, its universal
lastic anisotropy index Au is given by [41]
u
FS = ⟨C⟩ : ⟨S⟩ − 6 (10)

where ⟨C⟩ is the average stiffness tensor and ⟨S⟩ is the average
compliance tensor. For an isotropic structure, Au

= 0. Each
average tensor was obtained by calculating the average of each
component using the transformation tensor

Q =

[ cos θ sin θ 0
− sin θ cos θ 0

0 0 1

][ 1 0 0
0 cosϕ sinϕ

0 − sinϕ cosϕ

]
, (11)

where ϕ and θ are polar and azimuthal angles, respectively. Using
the summation rule, the average

⟨
Cijkl

⟩
components of the C tensor

were calculated from the following formula⟨
Cijkl

⟩
=

1
4π

∫ π

0

∫ 2π

0
QipQjqQkrQlsCpqrs sin θdθdϕ, (12)

where the indices range from 1 to 3. The sin θ function is included
in Eq. (12) because all directions are assumed to have a uniform
distribution (i.e., probability density = sin θdθdϕ/4π ). Eq. (12)
gives the average tensor component as the summation of the
transformed tensor in every direction in the 3D space. Using
Eq. (12) to calculate the components of the average tensors in
Eq. (10) provides the universal elastic anisotropy index. To make
the latter comparable to the anisotropy index for cubic symmetry
(Zenner index), the following equation can be used [41]

Aeq
FS =

(
1 +

5
Au
FS

)
+

√(
1 +

5
Au
FS

)2

− 1. (13)

12 12
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Fig. 3. Maps of (A) normalized directional stiffness E/Eb and (B) critical buckling load λ/λFS[001] of the first stellation (FS) and octet truss (OT) macrostructures for
fixed relative density (ρ̄ = 0.02) plotted on the (110) plane. The stiffness of the FS macrostructure is significantly higher than that of the OT macrostructure in
the [001] direction. The intertwined unit cells at this specific alignment enhance the stiffness of the FS macrostructure between the ±45◦ directions and the [001]
irection. Although the desired direction of stiffness enhancement is the [001] direction, different spatial orientations of the intertwined unit cells may increase the
tiffness in different orientations. The critical buckling load of the FS macrostructure is significantly higher than that of the OT macrostructure in all directions except
n the domain defined by the ±30◦ directions and the [111] direction, a consequence of the lower FS stiffness in these directions and the differences in the inertia
of the structures in various directions. The buckling mode in the [001] direction is characterized by the twisting of beam members at the center of both structures,
although beam buckling is significantly more pronounced in the OT structure.
While AOT = 6.35 (i.e., independent of ρ̄OT), A
eq
FS = 14.96 and

8.54 for ρ̄FS = 0.02 and 0.2, respectively. This is indicative of
the anisotropy variance in intertwined geometries with different
relative densities, a characteristic not observed with unit cells
that are not intertwined with neighboring unit cells [42]. The
reason for the anisotropy variance is that an increase in beam
radius leads to localized ‘‘bulk’’ spots in the unit cell. As the
relative density increases, these spots begin to merge, creating
a bulk core in the structure. This trend is apparent in non-
intertwined geometries at very high relative densities. However,
at a very high relative density the unit cell becomes like the bulk
material and, consequently, its mechanical behavior is governed
by the properties of the bulk material, not those of the architected
design. Nevertheless, the FS hyper unit cell exhibits anisotropy
variance at a much lower relative density (i.e., ρ̄FS = 0.2).

A more succinct comparison of the directional normalized
stiffness E/Eb of the FS hyper unit cell and the OT unit cell for
fixed relative density (ρ̄FS = ρ̄OT = 0.02) is shown in Fig. 3A. This
figure was produced by projecting the directional stiffness map
onto the (110) plane. It can be seen that despite the significant
enhancement of the stiffness of the FS hyper unit cell (179%
higher than that of the OT unit cell in the [001] direction), this
effect is encountered between the ±45◦ directions and the [001]
direction. Nevertheless, in the vast majority of the literature, the
OT structure has been tested in the [001] direction [1,7,21,38],
presumably due to the high stress developing at the corners of
the unit cell when loaded in the [111] direction, which coincides
with the maximum stiffness of the structure.

A buckling analysis was also performed to determine the criti-
cal buckling load of the FS and OT structures in the [001] direction
of the stiffness enhancement. Specifically, the instability of in-
finitely large structures consisting of periodic arrays of the FS and
OT unit cells was examined by fixing one plane of the structure
and applying a unit load to the mirror plane of the structure. The
critical buckling load of each structure was obtained by solving
the eigenvalue relation

det
[
Km − λK g (σ)

]
= 0, (14)

where λ is the critical buckling load, Km is the linear elastic
stiffness matrix, and K g is the geometric stiffness matrix, which
depends on the applied stresses σ. Eq. (14) indicates that a struc-
ture instability occurs when the potential energy of the system
reaches a local maximum. Further details about the derivation of
Eq. (14) can be found elsewhere [29]. For consistency with the
directional E/Eb map (Fig. 3A), the directional normalized critical
buckling load λ/λFS[001] was also mapped onto the (110) plane
(Fig. 3B). The significantly higher critical buckling load in the
[001] direction of the FS structure than that of the OT structure
is attributed to the higher stiffness of the FS structure in that
direction and the different directional dependence of the inertia
matrix of each structure. It is noted that the OT structure displays
a higher critical buckling load between the ±30◦ directions and
the

[
111

]
direction, in accord with the higher stiffness of the

OT structure in this range (Fig. 3A). Interestingly, the buckling
mode of both structures comprises twisting of internal beam
members (normal displacement distributions are shown as insets
in Fig. 3B). However, the significantly larger number of beam
members in the OT structure undergoing buckling indicates a
higher likelihood for the simultaneous collapse of more beam
members compared to the FS structure.

3. Experiments

To validate the enhancement of the mechanical performance
in the [001] direction owing to lattice intertwining, mechani-
cal testing was performed with macrostructures fabricated by
3D printing using a Stratasys Objet260 Connex3 multi-material
printer. The structural material was PolyJet VeroWhitePlus
RGD835 photopolymer resin, whereas the soluble support mate-
rial for 3D printing was PolyJet FullCure 706. After 3D fabrication,
the support material was removed with a water jet. To validate
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Fig. 4. (A–F) HIM images of microstructures fabricated by MPL and (G, H) representative stress–strain responses with SEM images of deformed structures obtained
at characteristic loading stages. The stress–strain response of the respective bulk structure is also shown for comparison. (A) Isomeric view of the OT microstructure
(scale bar = 5 µm). (B) Close-up view of the OT microstructure showing the uniform beam intersection at all joints of the structure (scale bar = 2 µm). (C)
Isomeric view of the FS structure (scale bar = 5 µm). (D) Close-up view the FS microstructure showing more beams intersecting at the joints compared to the OT
microstructure (scale bar = 2 µm). (E) Top view of the OT microstructure (scale bar = 10 µm). (F) Top view of the FS microstructure (scale bar = 10 µm). (G) The
echanical response of the FS and OT macrostructures. The FS macrostructure shows a transition from elastic deformation (AB range) to a stress plateau terminated
y the instigation of buckling (point C) and the subsequent instantaneous collapse of the structure (point D). Alternatively, the OT macrostructure demonstrates
linear elastic behavior (EF range), exhibiting fracture at significantly lower stress and strain that activates the spontaneous collapse of the structure (point G)

scale bars = 10 mm). (H) The mechanical response of the FS and OT microstructures. The FS microstructure demonstrates an elastic response (AB range) until the
nstigation of buckling in some bottom beam members (point B), resulting in the drop of the stress–strain curve (BC range). Unloading reveals that buckling resulted
n irreversible deformation. The OT microstructure also exhibits a linear elastic behavior (DE range) until the beam members that sustained large deformation as a
esult of bending begin to deform plastically (point F) (scale bars = 5 µm).
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he mechanical properties of the bulk material, 30 × 30 × 30
m blocks were also fabricated by 3D printing. The OT and FS
acrostructures were fabricated to have a surface area of 30 × 30
m2 and a relative density of 0.2. At lower relative densities,

he beam members were damaged and fractured during the re-
oval of the support material. The FS macrostructure consisted of
× 1 × 3 hyper unit cells, each having 9 FS unit cells, whereas the
T macrostructure consisted of 3 × 3 × 3 unit cells. Mechanical
ests were performed with an Instron-5500 apparatus, using a
ompression rate fixed at 2 mm/min. For statistical analysis,
macrostructures of each design were tested under identical

onditions. All of the lattice macrostructures were tested up
o the instigation of fracture. The experiments were recorded
ith a high-speed camera (i-SPEED 3, ix Cameras). Characteristic
ecordings of the tested OT and FS macrostructures can be seen in
ideos A and B, respectively, of the Supplementary Information
SI).

Furthermore, to compare with the mechanical performance at
he microscale, the same structure geometries were fabricated
ith the MPL process, a highly efficient process for fabricating
omplex 3D microstructures, using the photoresist ZS2080 as
tructural material. Details about the MPL apparatus and the
reparation of the microstructures can be found elsewhere [34].
ig. 4 shows characteristic helium ion microscopy (HIM) images
f microstructures fabricated by MPL. An isometric and a close-up
iew showing the joints of intersecting beam members of the OT
icrostructure are shown in Figs. 4A and 4B, respectively. Simi-

arly, an isomeric view and a close-up view of the joints of signifi-
antly more intersecting beammembers (analysed in section 2) of
he FS microstructure are shown in Figs. 4C and 4D, respectively.
igs. 4E and 4F show top views of the OT and FS microstruc-
ureswhere the loading was applied during mechanical testing.
o examine the mechanical performance at the microscale, in
itu compression tests were performed with a picoindenter (PI 85
EM PicoIndenter, Hysitron) placed inside a scanning electron mi-
roscope (FEI Quanta 3D FEG). This setup enables high-precision
anomechanical testing and real-time recording of the defor-
ation process. The compression tests were conducted with a

lat cylindrical molybdenum tip (model #72SC-D3/035 (407AM))
ith a diameter equal to 130 µm. The maximum tip displacement
as set at 5 µm, whereas the deformation rate was fixed at 800
m/s. While the macrostructures were tested up to fracture, the
echanical performance of the microstructures was evaluated
nly in the plastic deformation range because of the limited max-
mum force applied by the picoindenter. Characteristic recordings
f the tested FS and OT microstructures can be seen in Videos C
nd D of the SI, respectively.

. Results and discussion

Fig. 4 shows representative stress–strain responses of the
acroscopic and microscopic FS and OT structures and respective
ulk structures. The stress in the macroscale tests was calcu-
ated by dividing the load with the contact area of the rigid
late with the macrostructure, determined from the FEA contact
imulations. This was accomplished by assigning 8-node surface
lements to the beam members of the contacting surfaces of the



Z. Vangelatos, C. Li, C. Grigoropoulos et al. / Extreme Mechanics Letters 40 (2020) 100930 7

F
f
T
d
f
l
i
t
b
a
i
m
s
c
c
i
f
w
p
m
o
i
t
a
m
u
t
B
t
i
h
d
d
W
t
s
i
p

a
o
b
u
T
c
d
a
F
t
w

Table 1
Numerical and experimental results of the elastic stiffness and strain energy density of bulk, FS, and OT macroscopic and microscopic structures.

Structure
Mechanical properties

Numerical Experimental

Elastic stiffness E (MPa) Elastic stiffness E (MPa) Strain energy density∗ u (kJ/m3)

Macro Micro Macro Micro Macroa Microb

Bulk 160 95 160 ± 5.0 95.38 ± 3.22 76.02 ± 1.52 2285.3 ± 100.5
First stellation (FS) 89.8 68 86.5 ± 1.4 65.13 ± 5.81 28.12 ± 3.15 1324.0 ± 58.3
Octet truss (OT) 30.4 15 29.03 ± 0.08 16.69 ± 1.57 3.28 ± 0.83 196.4 ± 15.7

aFor an objective comparison, the stain energy density of the bulk and FS macrostructures was obtained at a strain equal to the fracture strain (0.05)
of the OT macrostructure.
bThe strain energy density of all microstructures was computed at the maximum strain (0.19) achieved in these tests.
t
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macrostructure and the plate. While at the instigation of deforma-
tion the contact area was very small, it increased with the applied
load, eventually reaching a constant value of 738.63 mm2 for the
S macrostructure and 1477.25 mm2 for the OT macrostructure
or a downward displacement of the rigid plate by 0.1 mm.
hese values of the contact area were used to compute the stress
uring the entire loading cycle of each macrostructure. In the MPL
abrication, the beam members were fabricated by scanning the
aser beam multiple times over the same path, which resulted
n the formation of small joint protrusions. While this suggested
hat contact of the tip would be confined at the joints of the
eam members at the contact face of the microstructures, after
very small downward displacement of a few nm the tip came

nto contact with the cusps of the beam members as with the
acroscopic structures. Therefore, considering the similarity in
tructure and contact area at both scales, the stress in the mi-
roscale experiments was calculated by dividing the load with the
ontact area computed in the macroscale experiments expressed
n units of nm2, i.e., contact area of 738.63 and 1477.254 nm2

or the FS and OT microscale structures, respectively. The strain
as obtained as the ratio of the vertical displacement of the rigid
late (or tip) to the height of the undeformed structure. The bulk
aterial was compressed up to the available maximum force
f the Instron machine or the picoindenter apparatus. A signif-
cantly greater capacity for ductile deformation was observed at
he microscale. While the OT and FS macrostructures fractured
t a strain of 0.05 and 0.09, respectively, both the OT and FS
icrostructures exhibited plastic deformation without fracturing
p to a strain of 0.19. This result reveals a different effect of
he structure geometry on the mechanical behavior at each scale.
ecause the FS structure demonstrated a brittle-like behavior at
he macroscale, the mechanical behavior was controlled by the
nitial configuration of the lattice members. At the microscale,
owever, when the FS microstructure experienced post-yield
eformation, contact of the beam members that sustained large
eformation inhibited fracture, resulting in ductile-like behavior.
hile this was one of the principal design objectives of the inter-

wined lattice structures, as per previous reports [34], the present
tudy shows that the design principle of post-contact behavior
s redundant at the macroscale. Therefore, the elastic analysis
resented in the previous section is cogent at the macroscale.
The differences in the mechanical behavior of the structures

t the two length scales can be further interpreted in terms
f their respective stiffness, strain energy density, and critical
uckling load. The elastic stiffness E and strain energy density
of each structure at both length scales are given in Table 1.
he stiffness was measured as the slope of the stress–strain
urve at the beginning of loading, whereas the strain energy
ensity was obtained as the area under the stress–strain curve
t a fixed strain. To compare the mechanical performance of the
S macrostructure with that of its respective bulk structure and
he OT macrostructure, the corresponding strain energy densities
ere calculated for a strain equal to 0.05, which is the fracture
strain of the OT macrostructure (Fig. 4A). As mentioned in the
previous section, the mean value of the measured bulk stiffness
(160 MPa) was used in all the FEA simulations. Because the
microstructures did not fracture, their strain energy density was
computed for a strain equal to 0.19 (Fig. 4B) corresponding to the
maximum load applied to the microscale structures.

A comparison of the stress–strain responses shown in Fig. 4
and the data given in Table 1 reveals a superior mechanical
performance of the FS structure compared to the OT structure
at both scales. Specifically, the FS macrostructure demonstrated a
monotonically increasing stress–strain response, reaching a stress
plateau before the instigation of fracture (point C in Fig. 4A).
However, the OT macrostructure exhibited a linear stress–strain
response and failed at a much lower stress and strain (point
F in Fig. 4A) compared to the FS macrostructure. This result
indicates a significantly higher (by a factor of ∼5.4) strain en-
ergy density at fracture for the FS structure than the OT struc-
ture at the macroscale. Moreover, at a strain equal to 0.05, the
FS macrostructure demonstrated a strain energy density equal
to ∼37% of its bulk material (Table 1), showing that the FS
macrostructure can absorb a high amount of strain energy de-
spite having 80% less material than the respective bulk structure.
In addition, the FS macrostructure showed ∼8.6 times higher
strain energy density (at a strain of 0.05) compared to the OT
macrostructure (Table 1). This finding is important for ultralight
structure applications that can potentially utilize beam structures,
such as those used in aerospace engineering [43]. In addition, as
shown in Table 1, the stiffness of the FS macrostructure is ∼3
imes higher than the OT stiffness and ∼54% of the bulk stiff-
ess. Importantly, even though the FS macrostructure possesses a
ending dominated geometry, it is about three times stiffer than
he OT macrostructure, which is a stretching dominated structure,
finding consistent with the FEA simulation results.
Moreover, it is instructive to examine the stress distribution

n both macrostructures and juxtapose the origin of failure with
hat observed in the macroscale experiments. Figs. 5A and 5B
how von Mises equivalent stress distributions in the FS and
T macrostructures, respectively, obtained from a linear elastic
EA. While the stress is uniformly distributed across the OT
eam members (Fig. 5B), only the vertical beam members of
he FS macrostructure sustained high stress, while the stress in
he rest of the beams is almost zero (Fig. 5A). This result is in
greement with the failure mechanisms observed at both length
cales, where failure was found to commence in the vertical
eam members. In addition, the results shown in Figs. 5A and
B explain why the FS macrostructure maintained its structural
ntegrity, with only a small number of beam members exhibiting
ailure. The uniform stress distribution in all of the unit cells
f the OT macrostructure is also consistent with the failure of
his structure at both length scales, where a group of unit cells
ailed simultaneously as opposed to only a few beam members
ailing in the FS structure. This is further evidence of the superior
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Fig. 5. Distribution of the von Mises equivalent stress in the (A) FS and (B) OT macrostructures revealing the development of high stresses only in the vertical beams
of the FS macrostructure, with the rest of the beams showing almost zero stress, and a uniform distribution of higher stress in the beams of all the unit cells of
the OT macrostructure. Eigenvalue buckling mode of the FS hyper unit cell for loading applied to (C) the cusps of top beam members of the FS macrostructure and
(D) the joints of top beam members of the FS microstructure. In the former case, the first mode encompasses twisting of a joint at the top of the hyper unit cell,
presumed to be responsible for the subsequent fracture of the FS macrostructure observed in the macroscale experiments, whereas in the latter case, the first mode
shows excessive beam bending at the bottom of the microstructure, consistent with the FS microstructure behavior observed in the microscale experiments.
h
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l
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t
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s
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t
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mechanical behavior of the FS structure compared to the OT
structure.

At the microscale (Fig. 4B), the FS structure demonstrated
an increasing stress response up to a strain of 0.19, at which
instant some beam members at the bottom of the microstructure
buckled. The larger stress–strain hysteresis area of the FS mi-
crostructure compared to that of the OT microstructure reveals a
significantly higher strain energy density for this microstructure.
More specifically, the strain energy density of the FS microstruc-
ture is ∼6.7 times higher than that of the OT microstructure
and ∼58% that of the bulk structure (Table 1). Likewise with
the macroscale, the FS structure demonstrates significant strain
energy capacity at the microscale. In addition, its elastic stiffness
is ∼4.5 times higher than that of the OT microstructure and ∼71%
of the respective bulk structure (Table 1). These results indicate
that the FS structure exhibits a superior mechanical performance
than the OT structure at both length scales, while it reserves a sig-
nificant portion of the mechanical capacity of the bulk material,
despite having only 20% of the volume of the bulk structure.

The critical buckling load and buckling modes of the FS struc-
ture were also examined at both length scales. The critical buck-
ling load was computed by solving Eq. (14). The loading area used
in the eigenvalue buckling analysis matched that in the experi-
ments. To apply the initial loading conditions in the experiments
in the buckling analysis of the macrostructures, the load was
applied at the cusps of the top beams that initially came into
contact with the rigid plate, whereas in the buckling analysis of
the microstructures, the load was applied to the joints of the top
beammembers. At both scales, the bottom nodes of the structures
were fixed to prevent any movement during loading.

The critical buckling load of the FS macrostructure (1 × 1 × 3
yper unit cells) was found to be equal to 3706.4 N, which is
n close agreement with the experimentally measured buckling
oad of 3735 ± 30 N. In addition, a close inspection of the
eformation response shown in Video B of the SI shows localized
wisting of the beam members at the top of the FS macrostruc-
ure before the instigation of fracture. This failure mode is the
ame as the buckling eigenvector mode obtained from the FEA
imulations (Fig. 5C). However, the critical buckling load of the
T macrostructure (3 × 3 × 3 unit cells) was found to be equal
o 6926.4 N, which is ∼1.87 times that of the FS macrostruc-
ure, implying premature failure of the OT macrostructure before
uckling, which for a material demonstrating limited plasticity,
uch as the resin material used to fabricate the macrostructures,
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will lead to brittle fracture. The foregoing scenario is validated
by the absence of any buckling events during testing of the OT
macrostructure, as seen in Video A of the SI. Another potential
reason for the premature failure of the OT macrostructure is
that the FS hyper unit cells have disproportionally more beam
members connected to their joints compared to the OT unit cells,
implying a greater enhancement of the FS structural integrity.
Specifically, while there are 4 beams projecting outwardly from
each face of the FS unit cell (Fig. 1B), such beams do not exist
in the OT unit cell (Fig. 1A). This is because non-intertwined
geometries, such as the OT, are not augmented with this critical
feature. Hence, the OT is negatively affected by higher stress
concentration effects leading to premature collapse.

The critical buckling load of the FS microstructure was found
to be equal to 10.3 mN, which is close to the experimental value
of 10.27 ± 0.055 mN. As seen in Video C of the SI, the buckling
instability in the FS microstructure commenced at the end of
loading upon the collapse of bottom beam members. This defor-
mation mode is consistent with the eigenvalue buckling mode
(Fig. 5D) for the respective loading conditions. However, the crit-
ical buckling load of the OT microstructure was found to be equal
to 18.73 mN, which is ∼1.82 times that of the FS microstructure.
Although the deformation of the OT microstructure, seen in Video
D of the SI, demonstrated excessively large deformation of some
beam members, the absence of a discernible abrupt drop in the
respective stress–strain response (Fig. 4B) suggests that these
beam members bent but did not buckle. Therefore, plastic defor-
mation developed in the OT microstructure at a much lower load
than the critical buckling load. It should be noted that the critical
buckling load of the infinitely large structure consisting of FS
hyper unit cells was found to be higher than that of the infinitely
large structure consisting of OT unit cells, evidently because of the
different sizes of the structures and boundary conditions used in
the two buckling analyses.

Although all of the above results illuminate the superior me-
chanical performance of the FS structure relative to the OT struc-
ture and its light weight efficiency compared to the bulk structure
at both length scales, it is informative to place these results
in perspective with each other and with previously reported
results [34–36]. One of the principal characteristics of lattice
intertwining is that large deformation causes the beam mem-
bers to come into contact, consequently enhancing the stiffness
and strain energy density of the structure in a manner mimick-
ing strain hardening. This effect occurs during plastic deforma-
tion, when the beams sustain very large strains. As a result, FS
microlattices demonstrate an order of magnitude higher strain
hardening than the bulk material [34]. The obtained results elu-
cidate the specific mechanical attributes of intertwined struc-
tures at different length scales. Because the fabrication material
of the microscopic lattices exhibits significant ductility, these
structures demonstrated high energy dissipation in plastic de-
formation mode. Hence, geometric effects of lattice intertwining
become more important from the perspective of tactical densifi-
cation and post contact. Alternatively, the fairly rigid structural
material used to fabricate the macroscopic lattices necessitates
architecting the structures such that to enhance their mechanical
behavior in the elastic deformation mode. Therefore, the initial
configuration of the lattice structure is critical at the macroscale.
This is important consideration for optimizing the design strategy
depends on the length scale and intertwining geometry.

The present analysis shows that intertwined structures are
characterized by high stiffness and high strain energy density at
both microscale and macroscale, using either brittle or ductile
materials for their fabrication. In addition, the intriguing concept
of variable anisotropy [23] enables the relative density to be used

as a design parameter to control the directional stiffness of the
structure. However, this was accomplished by merging differ-
ent unit cells [23], not by intertwining select beam members.
Therefore, different orientations of intertwined geometries must
be explored to obtain lattice structures demonstrating isotropic
behavior at low relative densities. Although this may increase
the complexity of the design, optimization techniques, such as
machine learning, can be used to identify such structures for a
wide range of orientations [44]. Additionally, tailoring the direc-
tional stiffness may lead to novel dynamic behaviors, such as
tailored bandgaps in dispersion curves of resonant metamateri-
als for controlling wave propagation [45]. The foregoing effects
observed with intertwined structures provide impetus for devel-
oping new design strategies for metamaterials with architected
lattices demonstrating unprecedented mechanical performance.

5. Conclusions

Experimental and numerical studies were undertaken to in-
vestigate the mechanical behavior of macroscopic and micro-
scopic structures possessing intertwined lattices fabricated by
3D printing and MPL, respectively. FEA simulations showed that
the elastic stiffness can be tailored and enhanced even for a
bending dominated structure and that the anisotropic behavior
of the structure can be altered by intertwining the lattice mem-
bers. Mechanical testing of the FS structure revealed both high
stiffness and strain energy density despite having only 20% of
the volume of the respective bulk structure. The obtained results
indicate that the superior stiffness and strain energy density of
intertwined geometries can be realized either under purely elastic
deformation conditions at the macroscale or in the presence of
excessive plasticity at the microscale. This study paves the way
for the investigation and utility of intertwined structures for
controlling the anisotropy of ultralight/ultrastiff geometries at
micro/macroscales, which is of particular importance in large-
scale engineering applications and microstructural engineering of
structures. In addition, it promulgates how different mechanical
effects manifest themselves at different length scales, depending
on the fabrication material and deformation regime.
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